Ilmu Pengetahuan Alam (SMP kelas 3)

INDUKSI ELEKTROMAGNETIK (Materi IPA Kelas 9 SMP/MTs)

Sumber :ILMU ALAM SEKITAR
Penulis : SUKIS WARIYONO

kudaListrik dalam era industri merupakan keperluan yang sangat vital. Dengan adanya transformator, keperluan listrik pada tegangan yang sesuai dapat terpenuhi. Dahulu untuk membawa listrik diperlukan kuda. Kuda (pada gambar) sedang membawa pembangkit listrik untuk penerangan lapangan ski. Seandainya transformator belum ditemukan, berapa ekor kuda yang diperlukan untuk penerangan sebuah kota? Fenomena pemindahan listrik akan kamu pelajari pada bab ini. Pada bab ini kamu akan mempelajari pemanfaatan kemagnetan dalam produk teknologi.

:: Pretest ::
1. Bagaimanakah cara membuat elektromagnetik?
2. Apakah kegunaan galvano
meter?
3. Berilah contoh alat yang dapat mengubah
energi gerak menjadi energi listrik !

:: Kata-Kata Kunci ::
– arus induksi
– generator
– dinamo
– GGL induksi
– efisiensi transformator
– transformator
– fluks magnetik
– transmisi daya listrik

Adakah pusat pembangkit listrik di dekat rumahmu? Pembangkit listrik biasanya terletak jauh dari permukiman penduduk. Untuk membawa energi listrik, atau lebih dikenal transmisi daya listrik, diperlukan kabel yang sangat panjang. Kabel yang demikian dapat menurunkan tegangan. Karena itu diperlukan alat yang dapat menaikkan kembali tegangan sesuai keperluan. Pernahkah kamu melihat tabung berwarna biru yang dipasang pada tiang listrik? Alat tersebut adalah transformator yang berfungsi untuk menaikkan dan menurunkan tegangan. Bagaimanakah cara menaikkan dan menurunkan tegangan listrik? Untuk memahami hal ini pelajari uraian berikut


A. GGL INDUKSI
Ketika kutub utara magnet batang digerakkan keluar dari dalam kumparan, jumlah garis-garis gaya magnet yang terdapat di dalam kumparan berkurang. Berkurangnya jumlah garis-garis gaya ini juga menimbulkan GGL induksi pada ujung-ujung kumparan. GGL induksi yang ditimbulkan menyebabkan arus listrik mengalir dan menggerakkan jarum galvanometer. Sama halnya ketika magnet batang masuk ke kumparan. pada saat magnet keluar garis gaya dalam kumparan berkurang. Akibatnya medan magnet hasil arus induksi bersifat menambah garis gaya itu. Dengan demikian, ujung, kumparan itu merupakan kutub selatan, sehingga arah arus induksi seperti yang ditunjukkan Gambar 12.1.b.
Ketika kutub utara magnet batang diam di dalam kumparan, jumlah garis-garis gaya magnet di dalam kumparan tidak terjadi perubahan (tetap).
Karena jumlah garis-garis gaya tetap, maka pada ujung-ujung kumparan tidak terjadi GGL induksi. Akibatnya, tidak terjadi arus listrik dan jarum galvanometer tidak bergerak. Jadi, GGL induksi dapat terjadi pada kedua ujung kumparan jika di dalam kumparan terjadi perubahan jumlah garis-garis gaya magnet (fluks magnetik).
GGL yang timbul akibat adanya perubahan jumlah garis-garis gaya magnet dalam kumparan disebut GGL induksi. Arus listrik yang ditimbulkan GGL induksi disebut arus induksi. Peristiwa timbulnya GGL induksi dan arus induksi akibat adanya perubahan jumlah garis-garis gaya magnet disebut induksi elektromagnetik. Coba sebutkan bagaimana cara memperlakukan magnet dan kumparan agar timbul GGL induksi?

2. Faktor yang Memengaruhi Besar GGL Induksi Sebenarnya besar kecil GGL induksi dapat dilihat pada besar kecilnya penyimpangan sudut jarum galvanometer. Jika sudut penyimpangan jarum galvanometer besar, GGL induksi dan arus induksi yang dihasilkan besar.
Bagaimanakah cara memperbesar GGL induksi? Ada tiga faktor yang memengaruhi GGL induksi, yaitu : a. kecepatan gerakan magnet atau kecepatan perubahan jumlah garis-garis gaya magnet (fluks magnetik), b. jumlah lilitan, c. medan magnet

Latihan
1. Apakah penyebab terjadinya GGL induksi? 2. Mengapa magnet yang diam di dalam kumparan tidak menimbulkan GGL induksi? 3. Apakah perubahan bentuk energi yang terjadi pada peristiwa induksi elektromagnetik? 4. Sebutkan tiga cara memperbesar arus induksi.

B. PENERAPAN INDUKSI ELEKTROMAGNETIK
Pada induksi elektromagnetik terjadi perubahan bentuk energi gerak menjadi energi listrik. Induksi elektromagnetik digunakan pada pembangkit energi listrik. Pembangkit energi listrik yang menerapkan induksi elektromagnetik adalah generator dan dinamo. Di dalam generator dan dinamo terdapat kumparan dan magnet. Kumparan atau magnet yang berputar menyebabkan terjadinya perubahan jumlah garis-garis gaya magnet dalam kumparan. Perubahan tersebut menyebabkan terjadinya GGL induksi pada kumparan. Energi mekanik yang diberikan generator dan dinamo diubah ke dalam bentuk energi gerak rotasi. Hal itu menyebabkan GGL induksi dihasilkan secara terus-menerus dengan pola yang berulang secara periodik

1. Generator Generator dibedakan menjadi dua, yaitu generator arus searah (DC) dan generator arus bolak-balik (AC). Baik generator AC dan generator DC memutar kumparan di dalam medan magnet tetap. Generator AC sering disebut alternator. Arus listrik yang dihasilkan berupa arus bolak-balik. Ciri generator AC menggunakan cincin ganda. Generator arus DC, arus yang dihasilkan berupa arus searah.
Ciri generator DC menggunakan cincin belah (komutator). Jadi, generator AC dapat diubah menjadi generator DC dengan cara mengganti cincin ganda dengan sebuah komutator. Sebuah generator AC kumparan berputar di antara kutub- kutub yang tak sejenis dari dua magnet yang saling berhadapan. Kedua kutub magnet akan menimbulkan medan magnet. Kedua ujung kumparan dihubungkan dengan sikat karbon yang terdapat pada setiap cincin. Kumparan merupakan bagian generator yang berputar (bergerak) disebut rotor. Magnet tetap merupakan bagian generator yang tidak bergerak disebut stator.
Bagaimanakah generator bekerja? Ketika kumparan sejajar dengan arah medan magnet (membentuk sudut 0 derajat), belum terjadi arus listrik dan tidak terjadi GGL induksi (perhatikan Gambar 12.2). Pada saat kumparan berputar perlahan-lahan, arus dan GGL beranjak naik sampai kumparan membentuk sudut 90 derajat. Saat itu posisi kumparan tegak lurus dengan arah medan magnet.
Pada kedudukan ini kuat arus dan GGL induksi menunjukkan nilai maksimum. Selanjutnya, putaran kumparan terus berputar, arus dan GGL makin berkurang. Ketika kumparan mem bentuk sudut 180 derajat kedudukan kumparan sejajar dengan arah medan magnet, maka GGL induksi dan arus induksi menjadi nol.gb122

Putaran kumparan berikutnya arus dan tegangan mulai naik lagi dengan arah yang berlawanan. Pada saat membentuk sudut 270 derajat, terjadi lagi kumparan berarus tegak lurus dengan arah medan magnet. Pada kedudukan kuat arus dan GGL induksi menunjukkan nilai maksimum lagi, namun arahnya berbeda. Putaran kumparan selanjutnya, arus dan tegangan turun perlahanlahan hingga mencapai nol dan kumparan kembali ke posisi semula hingga memb entuk sudut 360 derajat.

2. Dinamo Dinamo dibedakan menjadi dua yaitu, dinamo arus searah (DC) dan dinamo arus bolak-balik (AC). Prinsip kerja dinamo sama dengan generator yaitu memutar kumparan di dalam medan magnet atau memutar magnet di dalam kumparan. Bagian dinamo yang berputar disebut rotor. Bagian dinamo yang tidak bergerak disebut stator. gb1231Perbedaan antara dinamo DC dengan dinamo AC terletak pada cincin yang digunakan. Pada dinamo arus searah menggunakan satu cincin yang dibelah menjadi dua yang disebut cincin belah (komutator). Cincin ini memungkinkan arus listrik yang dihasilkan pada rangkaian luar Dinamo berupa arus searah walaupun di dalam dinamo sendiri menghasilkan arus bolak-balik. Adapun, pada dinamo arus bolak-balik menggunakan cincin ganda (dua cincin). Alat pembangkit listrik arus bolak balik yang paling sederhana adalah dinamo sepeda. Tenaga yang digunakan untuk memutar rotor adalah roda sepeda. Jika roda berputar, gb124kumparan atau magnet ikut berputar. Akibatnya, timbul GGL induksi pada ujung-ujung kumparan dan arus listrik mengalir. Makin cepat gerakan roda sepeda, makin cepat magnet atau kumparan berputar. Makin besar pula GGL induksi dan arus listrik yang dihasilkan. Jika dihubungkan dengan lampu, nyala lampu makin terang. GGL induksi pada dinamo dapat diperbesar dengan cara putaran roda dipercepat, menggunakan magnet yang kuat (besar), jumlah lilitan diperbanyak, dan menggunakan inti besi lunak di dalam kumparan.

C. TRANSFORMATOR
Di rumah mungkin kamu pernah dihadapkan persoalan tegangan listrik, ketika kamu akan menghidupkan radio yang memerlukan tegangan 6 V atau 12 V. Padahal tegangan listrik yang disediakan PLN 220 V. Bahkan generator pembangkit listrik menghasilkan tegangan listrik yang sangat tinggi mencapai hingga puluhan ribu volt. Kenyataannya sampai di rumah tegangan listrik tinggal 220 V. Bagaimanakah cara mengubah tegangan listrik? Alat yang digunakan untuk menaikkan atau menurunkan tegangan AC disebut transformator (trafo). Trafo memiliki dua terminal, yaitu terminal input dan terminal output. Terminal input terdapat pada kumparan primer.
Terminal output terdapat pada kumparan sekunder. Tegangan listrik yang akan diubah dihubungkan dengan terminal input. Adapun, hasil pengubahan tegangan diperoleh pada terminal output.
Prinsip kerja transformator menerapkan peristiwa induksi elektromagnetik. Jika pada kumparan primer dialiri arus AC, inti besi yang dililiti kumparan akan menjadi magnet (elektromagnet). Karena arus AC, pada elektromagnet selalu terjadi perubahan garis gaya magnet. Perubahan garis gaya tersebut akan bergeser ke kumparan sekunder. Dengan demikian, pada kumparan sekunder juga terjadi perubahan garis gaya magnet.
Hal itulah yang menimbulkan GGL induksi pada kumparan sekunder. Adapun, arus induksi yang dihasilkan adalah arus AC yang besarnya sesuai dengan jumlah lilitan sekunder. gb125

Bagian utama transformator ada tiga, yaitu inti besi yang berlapis-lapis, kumparan primer, dan kumparan sekunder. Kumparan primer yang dihubungkan dengan PLN sebagai tegangan masukan (input) yang akan dinaikkan atau diturunkan. Kumparan sekunder dihubungkan dengan beban sebagai tegangan keluaran (output).

1. Macam-Macam Transformator
Apabila tegangan terminal output lebih besar daripada tegangan yang diubah, trafo yang digunakan berfungsi sebagai penaik tegangan. Sebaliknya apabila tegangan terminal output lebih kecil daripada tegangan yang diubah, trafo yang digunakan berfungsi sebagai penurun tegangan. Dengan demikian, transformator (trafo) dibedakan menjadi dua, yaitu trafo step up dan trafo step down.
Trafo step up adalah transformator yang berfungsi untuk menaikkan tegangan gb1271AC.
Trafo ini memiliki ciri-ciri:
a. jumlah lilitan primer lebih sedikit daripada jumlah lilitan sekunder,
b. tegangan primer lebih kecil daripada tegangan sekunder,
c. kuat arus primer lebih besar daripada kuat arus sekunder.
Trafo step down adalah transformator yang berfungsi untuk menurunkan tegangan AC. Trafo ini memiliki ciri-ciri:
a. jumlah lilitan primer lebih banyak daripada jumlah lilitan sekunder,

b. tegangan primer lebih besar daripada tegangan sekunder,
c. kuat arus primer lebih kecil daripada kuat arus sekunder.

2. Transformator Ideal
Besar tegangan dan kuat arus pada trafo bergantung banyaknya lilitan. Besar tegangan sebanding dengan jumlah lilitan. Makin banyak jumlah lilitan tegangan yang dihasilkan makin besar. Hal ini berlaku untuk lilitan primer dan sekunder. Hubungan antara jumlah lilitan primer dan sekunder dengan tegangan primer dan tegangan sekunder dirumuskan

Trafo dikatakan ideal jika tidak ada energi yang hilang menjadi kalor, yaitu ketika jumlah energi yang masuk pada kumparan primer sama dengan jumlah energi yang keluar pada kumparan sekunder.
Hubungan antara tegangan dengan kuat arus pada kumparan primer dan sekunder dirumuskan

Jika kedua ruas dibagi dengan t, diperoleh rumus :


Dalam hal ini faktor (V × I) adalah daya (P) transformator.
Berdasarkan rumus-rumus di atas, hubungan antara jumlah lilitan primer dan sekunder dengan kuat arus primer dan sekunder dapat dirumuskan sebagai:


Dengan demikian untuk transformator ideal akan berlaku persamaan berikut:

Dengan:
Vp = tegangan primer (tegangan input = Vi ) dengan satuan volt (V)
Vs = tegangan sekunder (tegangan output = Vo) dengan satuan volt (V)
Np = jumlah lilitan primer
Ns = jumlah lilitan sekunder
Ip = kuat arus primer (kuat arus input = Ii) dengan satuan ampere (A)
Is = kuat arus sekunder (kuat arus output = Io) dengan satuan ampere (A)

LATIHAN

1. Sebuah trafo digunakan untuk menaikkan tegangan AC dari 12 V menjaDI 120 V. Hitunglah:
a. kuat arus primer jika kuat arus sekunder 0,6 A,
b. jumlah lilitan sekunder, jika jumlah lilitan primer 300.



2. Sebuah transformator dihubungkan dengan PLN pada tegangan 100 V menyebabkan kuat arus pada kumparan primer 10 A. Jika perbandingan jumlah lilitan primer dan sekunder 1 : 25, hitunglah:
a. tegangan pada kumparan sekunder,
b. kuat arus pada kumparan sekunder.


3. Efisiensi Transformator
Di bagian sebelumnya kamu sudah mempelajari transformator atau trafo yang ideal. Namun, pada kenyataannya trafo tidak pernah ideal. Jika trafo digunakan, selalu timbul energi kalor. Dengan demikian, energi listrik yang masuk pada kumparan primer selalu lebih besar daripada energi yang keluar pada kumparan sekunder. Akibatnya, daya primer lebih besar daripada daya sekunder. Berkurangnya daya dan energi listrik pada sebuah trafo ditentukan oleh besarnya efisiensi trafo. Perbandingan antara daya sekunder dengan daya primer atau hasil bagi antara energi sekunder dengan energi primer yang dinyatakan dengan persen disebut efisiensi trafo. Efisiensi trafo dinyatakan dengan η . Besar efisiensi trafo dapat dirumuskan sebagai berikut:


LATIHAN
1. Sebuah trafo arus primer dan sekundernya masing-masing 0,8 A dan 0,5 A. Jika jumlah
lilitan primer dan sekunder masing-masing 1000 dan 800, berapakah efisiensi trafo?



2. Efisiensi sebuah trafo 60%. Jika energi listrik yang dikeluarkan 300 J, berapakah energi listrik yang masuk trafo?


SOAL LATIHAN

1. Tegangan primer dan sekunder sebuah trafo masing-masing 10 V dan 200 V. Jika jumlah lilitan sekunder 6.000, berapakah jumlah lilitan primer?
2. Sebuah trafo step down digunakan untuk mengubah tegangan AC dari 220 V menjadi 20 V. Berapakah:
a. perbandingan jumlah lilitan primer dan sekunder;
b. jumlah lilitan sekunder, jika jumlah lilitan primer 100?
3. Manakah yang lebih bagus kualitasnya trafo A efisiensinya 85% dan trafo B yang efisiensinya 90%? Mengapa? Coba jelaskan.

4. Penggunaan Transformator
Banyak peralatan listrik di rumah yang menggunakan transformator step down. Trafo tersebut berfungsi untuk menurunkan tegangan listrik PLN yang besarnya 220 V menjadi tegangan lebih rendah sesuai dengan kebutuhan. Sebelum masuk rangkaian elektronik pada alat, tegangan 220 V dari PLN dihubungkan dengan trafo step down terlebih dahulu untuk diturunkan. Misalnya kebutuhan peralatan listrik 25 V. Jika alat itu langsung dihubungkan dengan PLN, alat itu akan rusak atau terbakar. Namun, apabila alat itu dipasang trafo step down yang mampu mengubah tegangan 220 V menjadi 25 V, alat itu akan terhindar dari kerusakan. Ada beberapa alat yang menggunakan transformator antara lain catu daya, adaptor, dan transmisi daya listrik jarak jauh.

a. Power supply (catu daya)
Catu daya merupakan alat yang digunakan untuk menghasilkan tegangan AC yang rendah. Catu daya menggunakan trafo step down yang berfungsi untuk menurunkan tegangan 220 V menjadi beberapa tegangan AC yang besarnya antara 2 V sampai 12 V

b. Adaptor (penyearah arus)
Adaptor terdiri atas trafo step down dan rangkaian penyearah arus listrik yang berupa diode. Adaptor merupakan catu daya yang ditambah dengagb129n penyearah arus. Fungsi penyearah arus adalah mengubah tegangan AC menjadi tegangan DC.

c. Transmisi daya listrik jarak jauh
Pembangkit listrik biasanya dibangun jauh dari permukiman penduduk. Proses pengiriman daya listrik kepada pelanggan listrik (konsumen) yang jaraknya jauh disebut transmisi daya listrik jarak jauh. Untuk menyalurkan energi listrik ke konsumen yang jauh, tegangan yang dihasilkan generator pembangkit listrik perlu dinaikkan mencapai ratusan ribu volt. Untuk itu, diperlukan trafo step up.
Tegangan tinggi ditransmisikan melalui kabel jaringan listrik yang panjang menuju konsumen. Sebelum masuk ke rumah-rumah penduduk tegangan diturunkan menggunakan trafo step down hingga menghasilkan 220 V. Transmisi daya listrik jarak jauh dapat dilakukan dengan menggunakan tegangan besar dan arus yang kecil. Dengan cara itu akan diperoleh beberapa keuntungan, yaitu energi yang hilang dalam perjalanan dapat dikurangi dan kawat penghantar yang diperlukan dapat lebih kecil serta harganya lebih murah.



SOAL LATIHAN

1. Apakah perbedaan antara catu daya dengan adaptor?
2. Mengapa transmisi daya listrik jarak jauh menggunakan trafo?

RANGKUMAN

1. Menurut Faraday, adanya perubahan medan magnet pada suatu kumparan dapat menimbulkan gaya gerak listrik.
2. Besar GGL induksi bergantung pada tiga faktor, yaitu
a. kecepatan perubahan jumlah garis-garis gaya magnet,
b. jumlah lilitan,
c. kuat medan magnet.
3. Arah arus induksi dalam kumparan selalu sedemikian rupa sehingga menghasilkan medan magnet yang menentang sebab-sebab yang menimbulkannya.
4. Induksi elektromagnetik diterapkan pada: generator, dinamo, dan trafo.
5. Fungsi generator atau dinamo adalah untuk mengubah energi kinetik menjadi energi listrik.
6. Fungsi transformator atau trafo adalah menaikkan atau menurunkan tegangan AC. Untuk menaikkan tegangan listrik digunakan trafo step-up, sedangkan untuk menurunkan tegangan listrik digunakan trafo step-down.
7. Pada transformator ideal berlaku rumus


8. Untuk transformator yang tidak ideal berlaku rumus efisiensi



9. Transformator digunakan pada catu daya, adaptor, dan instalasi transmisi daya listrik jarak jauh
10. Transmisi daya listrik jarak jauh dapat dilakukan dengan menggunakan tegangan yang besar dan arus yang kecil. Dengan cara ini akan diperoleh beberapa keuntungan, yaitu energi yang hilang dalam perjalanan dapat dikurangi dan kawat penghantar yang diperlukan dapat lebih kecil serta harganya lebih murah.


KEMAGNETAN (Materi IPA Kelas 9 SMP/MTs)

Januari 4, 2009
Sumber : ILMU ALAM SEKITAR
Penulis : Sukis Wariyono
pemaPada era teknologi yang serba modern ini magnet memegang peranan  yang  sangat  penting.  Dari  pengembangan  sains,  telah berhasil membuat alat transportasi yang menggunakan magnet yang disebut  kereta  api  monorel.  Berbagai  alat  menggunakan  magnet seperti  alat-alat  rumah  tangga  dan  alat-alat  komunikasi.  Apakah sebenarnya  magnet  itu?  Bagaimanakah  prinsip  kerja  alat-alat  itu berdasarkan kemagnetan?
KEMAGNETAN BAHAN
Kita   dapat   menggolongkan   benda   berdasarkan   sifatnya. Pernahkah kamu melihat benda yang dapat menarik benda logam lain? Kemampuan suatu benda menarik benda lain yang berada di dekatnya   disebut   kemagnetan.   Berdasarkan   kemampuan   benda menarik benda lain dibedakan menjadi dua, yaitu benda magnet dan benda  bukan  magnet.  Namun,  tidak  semua  benda  yang  berada  di dekat magnet dapat ditarik. Benda yang dapat ditarik magnet disebut benda  magnetik.  Benda  yang  tidak  dapat  ditarik  magnet  disebut benda nonmagnetik.
Benda yang dapat ditarik magnet ada yang dapat ditarik kuat, dan   ada   yang   ditarik   secara   lemah.   Oleh   karena   itu,   benda dikelompokkan  menjadi  tiga,  yaitu  benda  feromagnetik,  benda paramagnetik, dan benda diamagnetik. Benda yang ditarik kuat oleh magnet  disebut  benda  feromagnetik.  Contohnya  besi,  baja,  nikel, dan kobalt. Benda yang ditarik lemah oleh magnet disebut benda paramagnetik. Contohnya platina, tembaga, dan garam. Benda yang ditolak  oleh  magnet  dengan  lemah  disebut  benda  diamagnetik. Contohnya timah, aluminium, emas, dan bismuth.
Benda-benda magnetik yang bukan magnet dapat dijadikan magnet.  Benda  itu  ada  yang  mudah  dan  ada  yang  sulit  dijadikan magnet.  Baja  sulit  untuk  dibuat  magnet,  tetapi  setelah  menjadi magnet sifat kemagnetannya tidak mudah hilang. Oleh karena  itu, baja digunakan untuk membuat magnet tetap (magnet permanen). Besi mudah untuk dibuat magnet, tetapi jika setelah menjadi magnet  sifat  kemagnetannya  mudah  hilang.  Oleh  karena  itu,  besi digunakan untuk membuat magnet sementara. gb11121121Setiap benda magnetik pada dasarnya terdiri magnet-magnet kecil yang disebut magnet elementer. Cobalah mengingat kembali teori partikel zat di kelas VII. rinsip membuat magnet adalah mengubah susunan magnet elementer yang tidak beraturan menjadi searah dan teratur. Ada tiga cara membuat magnet, yaitu menggosok, induksi, dan arus listrik.
1.      Membuat Magnet dengan Cara Menggosok
1131
Besi  yang  semula  tidak  bersifat  magnet,  dapat  dijadikan magnet. Caranya besi digosok dengan salah satu ujung magnet tetap. Arah gosokan dibuat searah agar magnet elementer yang terdapat pada  besi  letaknya  menjadi   teratur  dan  mengarah  ke  satu  arah.
2.   Membuat Magnet dengan Cara Induksi
1141Besi  dan  baja  dapat  dijadikan  magnet  dengan  cara  induksi magnet.  Besi  dan  baja  diletakkan  di  dekat  magnet  tetap.  Magnet elementer yang terdapat pada besi dan baja akan terpengaruh atau terinduksi  magnet  tetap  yang  menyebabkan  letaknya   teratur  dan mengarah ke satu arah. Besi atau  baja akan menjadi magnet sehingga dapat menarik serbuk besi yang berada di dekatnya.
Ujung  besi  yang  berdekatan  dengan  kutub  magnet  batang, akan terbentuk kutub yang selalu berlawanan dengan kutub magnet penginduksi. Apabila kutub utara magnet batang berdekatan dengan ujung A besi, maka ujung A besi menjadi kutub selatan dan ujung B besi  menjadi kutub utara atau sebaliknya.
3.   Membuat Magnet dengan Cara Arus Listrik
1162_Selain  dengan  cara  induksi,  besi  dan  baja  dapat  dijadikan magnet dengan arus listrik. Besi dan baja dililiti kawat yang dihu- bungkan dengan baterai. Magnet elementer yang terdapat pada besi dan baja akan  terpengaruh aliran arus searah (DC) yang dihasilkan baterai. Hal ini menyebabkan magnet elementer letaknya teratur dan mengarah  ke  satu  arah.  Besi  atau  baja  akan  menjadi  magnet  dan dapat menarik serbuk besi yang berada di dekatnya. Magnet yang demikian disebut magnet listrik atau elektromagnet.
Besi yang berujung A dan B dililiti kawat berarus listrik. Kutub magnet yang terbentuk bergantung pada arah arus ujung kumparan. Jika  arah  arus  berlawanan  jarum  jam  maka  ujung  besi  tersebut menjadi kutub utara. Sebaliknya, jika arah arus searah putaran jarum jam  maka  ujung  besi  tersebut  terbentuk  kutub  selatan.  Dengan demikian, ujung A kutub utara dan B kutub selatan atau sebaliknya.
Setelah  kita  dapat  membuat  magnet  tentu  saja  ingin  menyimpannya. Agar sifat kemagnetan sebuah magnet dapat tahan lama, maka dalam menyimpan magnet diperlukan angker (sepotong besi) yang dipasang pada kutub magnet. Pemasangan angker bertu- juan untuk mengarahkan magnet elementer hingga membentuk rantai tertutup. Untuk menyimpan dua buah magnet batang  diperlukan dua  angker yang dihubungkan dengan dua kutub magnet yang berlawanan.  Jika berupa magnet U untuk menyimpan diperlukan satu angker yang dihubungkan pada kedua kutubnya. 117Kita  sudah  mengetahui  benda  magnetik  dapat  dijadikan magnet. Sebaliknya magnet juga dapat dihilangkan kemagnetannya. Bagaimana  caranya?  Sebuah  magnet  akan  hilang  sifat  kemagnetannya jika magnet dipanaskan, dipukul-pukul, dan dialiri arus listrik bolak-balik.  Magnet  yang  mengalami  pemanasan  dan  pemukulan akan   menyebabkan   perubahan   susunan   magnet   elementernya. Akibat pemanasan dan pemukulan magnet elementer menjadi tidak teratur dan tidak searah. Penggunaan arus AC menyebabkan arah arus  listrik  yang  selalu  berubah-ubah.  Perubahan  arah  arus  listrik memengaruhi letak dan arah magnet elementer. Apabila letak dan arah magnet elementer berubah, sifat kemagnetannya hilang.118Latihan !
1.   Apakah yang terjadi pada besi dan baja apabila  arah  gosokan  ujung  magnet tetap arahnya bolak-balik ?
2.   Mengapa   jika   kaca   digosok   dengan magnet  tetap,  berapapun  lamanya   gosokan kaca tidak dapat menjadi magnet?
3.   Mengapa  magnet  yang  dibakar  akan hilang sifat kemagnetannya?
KUTUB MAGNET
1191Di awal bab ini kamu sudah mengenal istilah kutub magnet. Selanjutnya di bagian ini kamu akan lebih memperdalam sifat-sifat kutub magnet. Jika magnet batang ditaburi serbuk besi atau paku- paku kecil, sebagian besar serbuk besi maupun paku akan melekat pada kedua ujung magnet. Bagian kedua ujung magnet akan lebih banyak serbuk besi atau paku yang menempel daripada di bagian tengahnya. Hal itu menunjukkan bahwa gaya tarik magnet paling kuat  terletak  pada  ujung-ujungnya.  Ujung  magnet  yang  memiliki gaya  tarik  paling  kuat  itulah  yang  disebut  kutub  magnet.  Bagai- manakah menentukan jenis kutub magnet? Sebuah magnet batang yang tergantung bebas dalam keadaan setimbang,  ujung-ujungnya  akan  menunjuk  arah  utara  dan  arah selatan bumi. Ujung magnet yang menunjuk arah utara bumi disebut kutub utara magnet. Sebaliknya, ujung magnet yang menunjuk arah selatan bumi disebut kutub selatan magnet. Setiap  magnet  memiliki  dua  kutub,  yaitu  kutub  utara  dan kutub selatan. 1110Alat yang digunakan untuk menunjukkan arah utara bumi atau geografis disebut kompas. Kompas merupakan magnet jarum yang dapat bergerak bebas pada sebuah poros. Pada keadaan setimbang salah satu ujung magnet jarum menunjuk arah utara dan ujung lainnya menunjuk arah selatan. Kamu  sudah  mengetahui  bahwa  magnet  mempunyai  dua kutub,  yaitu  kutub  utara  dan  kutub  selatan.  Apabila  dua  kutub magnet didekatkan akan saling mengadakan interaksi. Jenis interaksi bergantung jenis-jenis kutub yang berdekatan.  Apakah yang terjadi jika  kutub  utara  sebuah  magnet    didekatkan  dengan  kutub  utara magnet lain? Atau sebaliknya, apakah yang terjadi jika kutub utara sebuah magnet  didekatkan dengan kutub selatan  magnet lain?
Untuk mengetahui interaksi antarkutub dua magnet, cobalah melakukan   kegiatan   berikut   secara   berkelompok.   Sebelumnya, bentuklah  satu  kelompok  yang  terdiri  4  siswa;  2  laki-laki  dan  2 perempuan.
Tujuan: Mengetahui interaksi antarkutub
Alat dan Bahan:
-   Magnet batang alnico
-   Benang
-   Spidol
-   Statif
- benang
- magnet
- magnet kertas
Cara Kerja:
1.  Ikatlah  sebuah  magnet  batang  di  tengah-tengahnya  dan gantungkan pada statif.
2.  Setelah dalam keadaan seimbang, dekati kutub magnet dengan kutub sejenis magnet yang lain.pcb1
3.  Amatilah keadaan magnet.
4.  Ulangi  cara  kerja  nomor  2-3,  tetapi  menggunakan  kutub magnet yang berlawanan jenis.
Pertanyaan:
1.  Apa  yang  terjadi  jika  dua  kutub  sejenis  berinteraksi  atau berdekatan?
2.  Apa yang terjadi jika dua kutub berlawanan jenis berinteraksi?
3.  Nyatakan kesimpulan kelompokmu di buku kerjamu.
Kamu  sudah  melakukan  kegiatan  berupa  menginteraksikan dua magnet; jika kutubnya senama akan saling menolak tetapi jika kutubnya  berbeda  akan  saling  menarik.  Pada  saat  dua  magnet terpisah jarak yang jauh, belum terasa adanya gaya tarik atau gaya tolak. Makin dekat kedua magnet, makin terasa kuat gaya tarik atau gaya tolaknya.
Jika di sekitar magnet batang diletakkan benda-benda mag- netik, benda-benda itu akan ditarik oleh magnet. Makin dekat dengan magnet, gaya tarik yang dialami benda makin kuat. Makin jauh dari magnet makin kecil gaya tarik yang dialami benda. Ruang di sekitar magnet  yang  masih  terdapat  pengaruh  gaya  tarik  magnet  disebut medan magnet. Pada tempat tertentu benda tidak mendapat penga- ruh gaya tarik magnet. Benda yang demikian dikatakan berada di luar medan  magnet.  Medan  magnet  tidak  dapat  dilihat  dengan  mata. Namun, keberadaan dan polanya dapat ditunjukkan. 1111Garis-garis  yang  menggambarkan  pola  medan  magnet  di- sebut  garis-garis  gaya  magnet.  Garis-garis  gaya  magnet  tidak pernah  berpotongan  satu  sama  lainnya.  Garis-garis  gaya  magnet keluar dari kutub utara, masuk (menuju) ke kutub selatan. Makin banyak  jumlah  garis-garis  gaya  magnet  makin  besar  kuat  medan magnet yang dihasilkan. Apapun bentuknya sebuah magnet memiliki medan magnet yang digambar berupa garis lengkung.
Dua kutub magnet yang tidak sejenis saling berdekatan pola medan  magnetnya  juga  berupa  garis  lengkung  yang  keluar  dari kutub utara magnet menuju kutub selatan magnet. Bagaimanakah kerapatan pola medan magnet dua kutub magnet yang makin berdekatan?
Pada  dua  kutub  magnet  yang  tak  sejenis,  garis-garis  gaya magnetnya  keluar  dari  kutub  utara  dan  masuk  ke  kutub  selatan magnet lain. Itulah sebabnya dua kutub magnet yang tidak sejenis saling tarik-menarik.
Pada dua kutub magnet yang sejenis, garis-garis gaya magnet yang  keluar  dari  kutub  utara  masing-masing  cenderung  saling menolak. Mengapa? Karena arah garis gaya berlawanan, terjadilah tolak-menolak  antara    garis-garis  gaya  yang  keluar  kedua  kutub utara magnet. Hal itulah yang menyebabkan dua kutub yang sejenis saling menolak.1112
Latihan
1.   Apakah  perbedaan  antara  kutub  utara dan kutub selatan sebuah magnet?
2.   Sebutkan  dua  sifat-sifat  kutub  magnet yang saling berdekatan.
3.   Apakah yang dimaksud medan magnet?
4.   Bagaimanakah  pengaruh  jumlah  garis gaya  magnet  terhadap  kekuatan  magnet?
KEMAGNETAN BUMI
1.   Bumi Sebagai Magnet
Kamu   sudah   mengetahui   sebuah   magnet   batang   yang tergantung  bebas  akan  menunjuk  arah  tertentu.  Pada  bagian  ini, kamu akan mengetahui mengapa magnet bersikap seperti itu. Pada umumnya   sebuah   magnet   terbuat   dari   bahan   besi   dan   nikel. Keduanya memiliki sifat kemagnetan karena tersusun oleh magnet- magnet  elementer.  Batuan-batuan  pembentuk  bumi  juga  mengan- dung  magnet  elementer.  Bumi  dipandang  sebagai  sebuah  magnet batang yang besar yang membujur dari utara ke selatan bumi. Mag- net bumi memiliki dua kutub, yaitu kutub utara dan selatan. Kutub utara magnet bumi terletak di sekitar kutub selatan bumi. Adapun kutub  selatan  magnet  bumi  terletak  di  sekitar  kutub  utara  bumi. Magnet  bumi  memiliki  medan  magnet  yang  dapat  memengaruhi jarum kompas dan magnet batang yang tergantung bebas. 1114Medan magnet bumi digambarkan dengan garis-garis leng- kung yang berasal dari kutub selatan bumi menuju kutub utara bumi. Magnet  bumi  tidak  tepat  menunjuk  arah  utara-selatan  geografis. Penyimpangan magnet bumi ini akan menghasilkan garis-garis gaya magnet  bumi  yang  menyimpang  terhadap  arah  utara-selatan  geografis. Adakah pengaruh penyimpangan magnet bumi terhadap jarum kompas?
2.   Deklinasi  dan  Inklinasi
Ambillah sebuah  kompas dan letakkan di atas meja dengan penunjuk  utara (N) tepat menunjuk arah utara. Amatilah kutub utara jarum kompas. Apakah kutub utara jarum kompas tepat menunjuk arah utara (N)? Berapakah sudut yang dibentuk antara kutub utara jarum kompas dengan arah utara (N)?1116
Jika kita perhatikan kutub utara jarum kompas dalam keadaan setimbang tidak tepat menunjuk arah utara dengan tepat.  Penyim- pangan jarum kompas itu terjadi karena letak kutub-kutub magnet bumi tidak tepat berada di kutub-kutub bumi, tetapi menyimpang terhadap letak kutub bumi. Hal ini menyebabkan   garis-garis gaya magnet bumi mengalami penyimpangan terhadap arah utara-selatan bumi.  Akibatnya  penyimpangan  kutub  utara  jarum  kompas  akan membentuk sudut terhadap arah utara-selatan bumi (geografis). Sudut  yang  dibentuk  oleh  kutub  utara  jarum  kompas  dengan  arah utara-selatan geografis disebut deklinasi (Gambar 11.15). Pernahkah kamu memerhatikan mengapa kedudukan jarum kompas tidak mendatar. Penyimpangan jarum kompas  itu terjadi ka- rena garis-garis gaya magnet bumi tidak sejajar dengan permukaan bumi (bidang horizontal). Akibatnya, kutub utara jarum kompas me- nyimpang naik atau turun terhadap permukaan bumi. Penyimpangan kutub utara jarum kompas akan membentuk sudut terhadap bidang datar permukaan bumi. Sudut yang dibentuk oleh kutub utara jarum kompas dengan bidang datar disebut inklinasi (Gambar 11.16). Alat yang digunakan untuk menentukan besar inklinasi disebut inklinator.
MEDAN MAGNET DI SEKITAR ARUS LISTRIK
Tujuan belajarmu adalah dapat:
menjelaskan sifat medan magnet di sekitar kawat berarus listrik.
Arah  penyimpangan magnet   jarum   kompas ketika  berada  di  sekitar arus listrik dapat diterang- kan sebagai berikut.
Anggaplah arus listrik terletak  di  antara  telapak tangan kanan dan magnet jarum  kompas.  Jika  arus listrik   searah   dengan keempat  jari,  kutub  utara magnet  jarum  akan  me- nyimpang  sesuai  ibu  jari. Cara penentuan arah sim- pangan magnet jarum kom- pas  demikian  disebutkai- dah telapak tangan kanan.
Medan  magnet  di  sekitar  kawat  berarus  listrik  ditemukan secara tidak sengaja oleh  Hans Christian Oersted (1770-1851), ke- tika akan memberikan kuliah bagi mahasiswa. Oersted menemukan bahwa di sekitar kawat berarus listrik magnet jarum kompas akan bergerak (menyimpang). Penyimpangan magnet jarum kompas akan makin  besar  jika  kuat  arus  listrik  yang  mengalir  melalui  kawat diperbesar. Arah penyimpangan jarum kompas bergantung arah arus listrik yang mengalir dalam kawat.
Gejala itu terjadi jika kawat dialiri arus listrik. Jika kawat tidak dialiri arus listrik, medan magnet tidak terjadi sehingga magnet jarum kompas tidak bereaksi.
Perubahan   arah   arus   listrik   ternyata   juga   memengaruhi perubahan  arah  penyimpangan  jarum  kompas.  Perubahan  jarum kompas menunjukkan perubahan arah medan magnet.
Bagaimanakah  menentukan  arah  medan  magnet  di  sekitar penghantar berarus listrik?
Jika arah arus listrik mengalir sejajar dengan jarum kompas dari kutub selatan menuju kutub utara, kutub utara jarum kompas menyimpang berlawanan dengan arah putaran jarum jam.
Jika arah arus listrik mengalir sejajar dengan jarum kompas dari kutub utara menuju kutub selatan, kutub utara jarum kompas menyimpang searah dengan arah putaran jarum jam.1117
1.   Pola Medan Magnet di Sekitar Arus Listrik
Gejala  penyimpangan  magnet  jarum  di  sekitar  arus  listrik membuktikan bahwa arus listrik dapat menghasilkan medan magnet.
Arah medan magnet yang ditimbulkan arus listrik dapat diterangkan melalui aturan atau kaidah berikut. Anggaplah suatu peng- hantar berarus listrik digenggam tangan kanan. Perhatikan Gambar
11.18. Jika arus listrik searah ibu jari, arah medan magnet yang timbul searah keempat jari yang menggenggam. Kaidah yang demikian disebut kaidah tangan kanan menggenggam. 1118Tugas Individu !
Rancanglah suatu kegiatan untuk membuktikan adanya medan magnet  di  sekitar  penghantar  berarus  listrik.  Peralatan  yang  tersedia antara lain serbuk besi, penghantar, kertas, dan baterai. Gambarlah sketsa model kegiatanmu.
2.   Solenoida
Pada  uraian  sebelumnya  kamu  sudah  mempelajari  medan magnet yang timbul 11201pada penghantar lurus. Bagaimana jika peng- hantarnya  melingkar  dengan  jumlah  banyak?  Sebuah  penghantar melingkar jika dialiri arus listrik akan menghasilkan medan listrik seperti Gambar 11.19. Penghantar  melingkar  yang  berbentuk  kumparan  panjang disebut solenoida. Medan magnet yang ditimbulkan oleh solenoida akan lebih besar daripada yang ditimbulkan oleh sebuah penghantar melingkar,  apalagi  oleh  sebuah  penghantar  lurus.  Tahukah  kamu mengapa demikian?
Jika  solenoida  dialiri  arus  listrik  maka  akan  menghasilkan medan magnet. Medan magnet yang dihasilkan solenoida berarus listrik bergantung pada kuat arus listrik dan banyaknya kumparan. Garis-garis gaya magnet pada solenoida merupakan gabungan dari garis-garis gaya magnet dari kawat melingkar. Gabungan itu akan menghasilkan  medan  magnet  yang  sama  dengan  medan  magnet sebuah   magnet   batang   yang   panjang.   Kumparan   seolah-olah mempunyai  dua  kutub,  yaitu  ujung  yang  satu  merupakan  kutub utara  dan  ujung  kumparan  yang  lain  merupakan  kutub  selatan.
Latihan !
1.   Apakah   pengaruh   arah   arus   listrik terhadap arah medan magnet?
2.   Bagaimanakah pola medan magnet dari kawat berarus listrik?
3.   Di manakah titik yang memiliki medan magnet  paling  kuat    pada  kawat  me lingkar berarus listrik?
4.   Tentukan letak kutub utara dan selatanlat1
ELEKTROMAGNET
Tujuan belajarmu adalah dapat:
menjelaskan  cara  kerja elektromagnet dan penerapannya dalam bebera- pa teknologi.
Masih ingatkah kamu cara membuat magnet menggunakan arus listrik? Di bagian ini kamu akan lebih mendalami tentang magnet listrik   tersebut.   Magnet   listrik   atau   elektromagnet   sangat   erat hubungannya dengan solenoida.
Medan magnet yang dihasilkan oleh solenoida berarus listrik tidak terlalu kuat. Agar medan magnet yang dihasilkan solenoida berarus listrik bertambah kuat, maka di dalamnya harus dimasukkan inti besi lunak. Besi lunak merupakan besi yang tidak dapat dibuat menjadi magnet tetap. Solenoida berarus listrik dan dilengkapi de- ngan besi lunak itulah yang dikenal sebagai elektromagnet.
1.   Faktor  yang  Memengaruhi  Kekuatan  Elektromagnet
Apakah  yang  memengaruhi  besar  medan  magnet  yang  dihasilkan elektromagnet? Sebuah elektromagnet terdiri atas tiga unsur penting, yaitu jumlah lilitan, kuat arus, dan inti besi.
Makin banyak lilitan dan makin besar arus listrik yang mengalir, makin besar medan magnet yang dihasilkan. Selain itu medan magnet yang dihasilkan elektromagnet juga tergantung pada inti besi yang digunakan. Makin besar (panjang) inti besi yang berada dalam solenoida,  makin  besar  medan  magnet  yang  dihasilkan  elektromagnet. Jadi kemagnetan sebuah elektromagnet bergantung   besar kuat  arus  yang  mengalir,  jumlah  lilitan,  dan  besar  inti  besi  yang digunakan.
Elektromagnet menghasilkan medan magnet yang sama dengan medan magnet sebuah magnet batang yang panjang. Elektromagnet juga mempunyai dua kutub yaitu ujung yang satu merupakan kutub utara dan ujung kumparan yang lain merupakan kutub selatan.
Dibandingkan magnet biasa, elektromagnet banyak mempu- nyai  keunggulan.  Karena  itulah  elektromagnet  banyak  digunakan dalam kehidupan sehari-hari. Beberapa keunggulan elektromagnet antara lain sebagai berikut.
a.    Kemagnetannya dapat diubah-ubah dari mulai yang kecil sampai yang besar dengan cara mengubah salah satu atau ketiga dari kuat arus listrik, jumlah lilitan dan ukuran inti besi.
b.   Sifat kemagnetannya mudah ditimbulkan dan dihilangkan dengan  cara  memutus  dan  menghubungkan  arus  listrik  meng- gunakan sakelar.
c .   Dapat dibuat berbagai bentuk dan ukuran sesuai dengan kebutuhan yang dikehendaki.
d.   Letak kutubnya dapat diubah-ubah dengan cara mengubah arah arus listrik.
Kekuatan elektromagnet akan bertambah, jika:
a.  arus yang melalui kumparan bertambah,
b.  jumlah  lilitan  diperbanyak,
c.  memperbesar/memperpanjang inti besi.
Latihan
1.   Apakah yang dimaksud elektromagnet?
2.   Sebutkan tiga cara memperbesar medan magnet yang dihasilkan elektromagnet.
2.   Kegunaan  Elektromagnet
Beberapa  peralatan  sehari-hari  yang  menggunakan  elektromagnet antara lain seperti berikut.
a.   Bel  listrik
Bel listrik terdiri atas dua elektromagnet dengan setiap solenoida  dililitkan  pada  arah  yang  berlawanan  (perhatikan  Gambar11.21). 11211Apabila sakelar ditekan, arus listrik akan mengalir melalui solenoida. Teras besi akan menjadi magnet dan menarik  kepingan besi lentur dan pengetuk akan memukul bel (lonceng) menghasilkan bunyi. Tarikan kepingan besi lentur oleh elektromagnet akan me- misahkan titik sentuh dan sekrup pengatur yang berfungsi sebagai interuptor.  Arus  listrik  akan  putus  dan  teras  besi  hilang  kemag- netannya. Kepingan besi lentur akan kembali ke kedudukan semula. Teras besi akan menjadi magnet dan menarik  kepingan besi lentur dan  pengetuk  akan  memukul  bel  (lonceng)  menghasilkan  bunyi kembali. Proses ini berulang-ulang sangat cepat dan bunyi lonceng terus terdengar.
b.   Relai
Relai berfungsi sebagai sakelar untuk menghubungkan atau memutuskan  arus  listrik  yang  besar  pada  rangkaian  lain  dengan menggunakan arus listrik yang kecil. Ketika sakelar  S ditutup arus listrik  kecil  mengalir  pada  kumparan.  Teras  besi  akan  menjadi magnet  (elektromagnet)  dan  menarik  kepingan  besi  lentur.  Titik sentuh  C  akan  tertutup,  menyebabkan  rangkaian  lain  yang  mem- bawa arus besar akan tersambung. Apabila sakelar S dibuka, teras besi hilang kemagnetannya, keping besi lentur kembali ke kedudukan semula. Titik sentuh C terbuka dan rangkaian listrik lain terputus.
c.    Telepon
Telepon   terdiri   dari   dua   bagian   yaitu   bagian   pengirim (mikrofon)  dan  bagian  penerima  (telepon).  Prinsip  kerja  bagian mikrofon  adalah  mengubah  gelombang  suara  menjadi  getaran- getaran  listrik.  Pada  bagian  pengirim  ketika  seseorang  berbicara akan  menggetarkan  diafragma  aluminium.  Serbuk-serbuk  karbon yang  terdapat  pada  mikrofon  akan  tertekan  dan  menyebabkan hambatan  serbuk  karbon  mengecil.  Getaran  yang  berupa  sinyal listrik akan mengalir melalui rangkaian listrik.
Prinsip kerja bagian telepon adalah mengubah sinyal listrik menjadi gelombang bunyi. Sinyal listrik yang dihasilkan mikrofon diterima oleh pesawat telepon. Apabila sinyal  listrik berubah-ubah mengalir  pada  kumparan,  teras  besi  akan  menjadi  elektromagnet yang kekuatannya berubah-ubah (perhatikan Gambar 11.23). Dia- fragma  besi  lentur  di  hadapan  elektromagnet  akan  ditarik  dengan gaya yang berubah-ubah. Hal ini menyebabkan diafragma bergetar. Getaran  diafragma  memengaruhi  udara  di  hadapannya,  sehingga udara akan dimampatkan dan direnggangkan. Tekanan bunyi yang dihasilkan sesuai dengan tekanan bunyi yang dikirim melalui mi- krofon.
d.   Katrol  Listrik
Elektromagnet  yang  besar  digunakan  untuk  mengangkat sampah logam yang tidak terpakai. Apabila arus dihidupkan katrol listrik akan menarik  sampah besi dan memindahkan ke tempat yang dikehendaki. Apabila arus listrik dimatikan, sampah besi akan jatuh. Dengan cara ini sampah yang berupa tembaga, aluminium, dan seng dapat dipisahkan dengan besi. 1124Kebaikan katrol listrik adalah:
a.    mampu mengangkat sampah besi dalam jumlah besar
b.   dapat  mengangkat/memindahkan  bongkahan  besi  yang  tanpa rantai
c .   membantu memisahkan antara logam feromagnetik dan bukan feromagnetik.
Latihan
1.   Mengapa menambah jumlah lilitan dapat menghasilkan kemagnetan yang lebih besar?
2.   Bagaimana  cara  penentuan  elektromagnet? GAYA LORENTZ
Di   depan   telah   dijelaskan   bahwa   kawat   berarus   listrik menimbulkan medan magnet. Apakah yang terjadi jika kawat berarus listrik berada dalam medan magnet tetap?
Interaksi  medan  magnet  dari  kawat  berarus  dengan  medan magnet tetap akan menghasilkan gaya magnet. Pada peristiwa ini terdapat hubungan antara arus listrik, medan magnet tetap, dan gaya magnet.  Hubungan  besaran-besaran  itu  ditemukan  oleh  fisikawan Belanda, Hendrik Anton Lorentz (1853-1928). Dalam penyelidikan- nya  Lorentz  menyimpulkan  bahwa  besar  gaya  yang  ditimbulkan berbanding  lurus  dengan  kuat  arus,  kuat  medan  magnet,  panjang kawat dan sudut yang dibentuk arah arus listrik dengan arah medan magnet.  Untuk  menghargai  jasa  penemuan  H.A.  Lorentz,  gaya tersebut disebut gaya Lorentz. Apabila arah arus listrik tegak lurus dengan arah medan magnet, besar gaya Lorentz dirumuskan.
Dengan: F = B . I . l
F = gaya Lorentz satuan newton (N)
B = kuat medan magnet satuan tesla (T).
l = panjang kawat satuan meter (m)
I = kuat arus listrik satuan ampere (A)
Berdasarkan rumus di atas tampak bahwa apabila arah arus listrik tegak lurus dengan arah medan magnet, besar gaya Lorentz bergantung pada panjang kawat, kuat arus listrik, dan kuat medan magnet. Gaya Lorentz yang ditimbulkan makin besar, jika panjang kawat, kuat arus listrik, dan kuat medan magnet makin besar. Kawat panjangnya 2 m berada tegak lurus dalam medan magnet 20 T. Jika kuat arus listrik yang mengalir 400 mA, berapakah besar gaya Lorentz yang dialami kawat?
Penyelesaian:
Diketahui:   l = 2 m
B = 20 T
I = 400 mA = 0,4 A
Ditanya:   F = … ?
Jawab:    F = l I . B
= 2  . 0,4 .20
= 16 N
Arah gaya Lorentz bergantung pada arah arus listrik dan arah
medan  magnet.  Untuk  menentukan  arah  gaya  Lorentz  digunakan kaidah  atau  aturan  tangan  kanan.  Caranya  rentangkan  ketiga  jari yaitu ibu jari, jari telunjuk, dan jari tengah sedemikian hingga membentuk sudut 90 derajat  (saling tegak lurus). Jika ibu jari menunjukan arah arus listrik (I) dan jari telunjuk menunjukkan arah medan magnet (B) maka arah gaya Lorentz searah jari tengah (F). Dalam bentuk tiga dimensi, arah yang tegak lurus mendekati pembaca diberi simbol. Adapun arah yang tegak lurus menjauhi pembaca diberi simbol. 1126Gaya Lorentz yang ditimbulkan kawat berarus listrik dalam medan magnet dapat dimanfaatkan untuk membuat alat yang dapat mengubah energi listrik menjadi energi gerak. Alat yang menerapkan gaya Lorentz adalah motor listrik dan alat-alat ukur listrik. Motor listrik banyak dijumpai pada tape recorder, pompa air listrik, dan komputer.  Adapun,  contoh  alat  ukur  listrik  yaitu  amperemeter, voltmeter, dan ohmmeter.
Latihan !
Sebutkan  tiga  cara  memperbesar  gaya Lorentz  yang  ditimbulkan kawat  berarus dalam medan magnet !
Apabila masih ada materi yang belum kamu pahami, tanyakan pada gurumu. Setelah paham, maka pelajarilah bab selanjutnya.
Istilah – istilah penting
interuptor :  pemutus  arus.
kemagnetan :  gejala fisika pada bahan yang memiliki kemampuan menimbulkan medan magnet.
kutub magnet :  kedua ujung besi (magnet) yang paling kuat daya tariknya.
magnet elementer :  bagian terkecil dari magnet yang masih mempunyai sifat magnet.
motor listrik :  alat untuk mengubah energi listrik menjadi energi gerak.
solenoida :  kumparan yang panjang.
relai :  alat yang bekerja atas dasar penggunaan arus yang kecil untuk menghubungkan atau memutuskan arus listrik yang besar.

TATA SURYA (Materi IPA Kelas 9 SMP/MTs)

suryaMatahari adalah bintang. Matahari mempunyai lapisan gas dengan berbagai rapatan. Matahari adalah pusat tata surya kita. Mengapa matahari disebut sebagai pusat tata surya?
Fenomena tata surya dapat kamu pelajari pada bab ini. Pada bab ini kamu akan mempelajari hal-hal yang berkaitan dengan keanggotaan tata surya, bumi sebagai planet, dan gejala yang tampak di lapisan litosfer maupun atmosfer bumi.™
Pretest ™ 1. Bagaimana susunan tata surya? 2. Mengapa matahari termasuk salah satu bintang? 3. Bagaimana terbentuknya energi pada matahari? 4. Jelaskan fungsi satelit buatan yang diorbitkan di bumi. 5. Apa yang dimaksud pemanasan global?
Kata-Kata Kunci ™ – atmosfer                  – gerak rotasi – efek rumah kaca   – klorofluorokarbon – ekliptika                   – litosfer – gerhana                    – pemanasan global – gerak revolusi
Cobalah kamu menengadah ke angkasa pada malam hari. Benda-benda apa saja yang terlihat olehmu? Tentu saja kamu akan melihat ribuan benda langit. Benda-benda langit yang berkedip-kedip disebut bintang, tetapi ada juga yang tidak berkedap-kedip yang disebut planet. Dapatkah kamu dengan pasti menentukan jumlah benda-benda langit tersebut? Untuk mengetahui jawabannya pelajarilah uraian berikut ini.
A.   SISTEM TATA SURYA Di abad modern ini, banyak para ilmuan sering mengadakan penelitian, seperti penelitian di bidang astronomi. Dengan penelitian-penelitian di bidang astronomi, kita mampu mengenal tentang jagat raya. 1. Susunan Tata Surya Tata surya adalah susunan benda-benda langit yang terdiri atas matahari sebagai pusatnya dan planet-planet, meteorid, komet, serta asteroid yang mengelilingi matahari. Susunan tata surya terdiri atas matahari, delapan planet, satelit-satelit pengiring planet, komet, asteroid, dan meteorid. Perhatikan Gambar 13.1 berikut ini. 13Peredaran benda langit yang berupa planet dan benda langit lainnya dalam mengelilingi matahari disebut revolusi. Sebagian besar garis edarnya (orbit) berbentuk elips. Bidang edar planet-planet mengelilingi matahari disebut bidang edar, sedangkan bidang edar planet bumi disebut bidang ekliptika. Selain berevolusi benda-benda langit juga berputar pada porosnya yang disebut rotasi, sedangkan waktu untuk sekali berotasi disebut kala rotasi.
a.  Matahari Matahari merupakan pusat tata surya yang berupa bola gas yang bercahaya. Matahari merupakan salah satu bintang yang menghiasi galaksi Bima Sakti. Suhu permukaan matahari 6.000 derajat celsius yang  dipancarkan ke luar angkasa hingga sampai ke permukaan bumi, sedangkan suhu inti sebesar 15-20 juta derajat celsius. b. Planet Sebelum bulan Agustus 2006, para astronom masih berpendapat ada sembilan planet dalam tata surya, yaitu Merkurius, Venus, Bumi, Mars, Yupiter, Saturnus, Uranus, Neptunus, dan Pluto. Secara umum planet-planet bergerak dari barat ke timur, kecuali Venus dan Uranus. Setiap planet mempunyai kala revolusi dan kala rotasi yang berbeda-beda. Planet tidak bisa memancarkan cahaya sendiri tetapi hanya memantulkan cahaya yang diterima dari matahari. Pada tanggal 24 Agustus 2006 Majelis Umum Uni Astronomi Internasional (IAV) di Praha, Ceko, menyatakan bahwa Pluto bukan lagi sebagai planet. Bahkan pada tanggal 7 September 2006 nama Pluto diganti dengan deretan enam angka, yaitu 134340. Dengan demikian, sejak tanggal 24 Agustus 2006 di tata surya terdapat 8 planet. Ukuran antara planet satu dengan yang lain berbeda. Begitu pula jaraknya terhadap matahari. Planet yang terdekat terhadap matahari mempunyai kala revolusi terkecil. Data planet-planet dalam tata surya dapat kamu perhatikan pada Tabel 13.1.tbl13c. Komet Komet berasal dari bahasa Yunani, yaitu Kometes yang artinya berambut panjang. Komet menurut istilah bahasa adalah benda langit yang mengelilingi matahari dengan orbit yang sangat lonjong. Komet terdiri atas es yang sangat padat dan orbitnya lebih lonjong daripada orbit planet. Komet menyemburkan gas bercahaya yang dapat terlihat dari bumi. Bagian-bagian komet, yaitu: 1) inti komet, yaitu bagian komet yang kecil tetapi padat tersusun dari debu dan gas. 2) koma, yaitu daerah kabut di sekeliling inti. 3) ekor komet, yaitu bagian yang memanjang dan panjangnya mampu mencapai satu satuan astronomi (1SA = jarak antara bumi dan matahari). Arah ekor komet selalu menjauhi matahari. Hal itu dikarenakan ekor komet terdorong oleh radiasi dan angin matahari. 132Kebanyakan komet tidak dapat dilihat dengan mata telanjang, tetapi harus dengan menggunakan teleskop. Komet yang terkenal adalah komet Halley yang ditemukan oleh Edmunt Halley. Komet itu muncul setiap 76 tahun sekali. Komet sering disebut sebagai bintang berekor.
d. Asteroid Asteroid adalah benda langit yang mirip dengan planet-planet, yang terletak di antara orbit Mars dan Yupiter. Asteroid disebut juga planetoid  atau  planet kerdil. Asteroid yang terbesar dan yang pertama adalah  Ceres  yang ditemukan oleh  Giussepe Piazzi (astronom Italia). Icarus adalah salah satu asteroid yang pernah mendekati bumi dengan orbit yang berbentuk lonjong. e. Meteoroid Meteoroid adalah batuan-batuan kecil yang sangat banyak dan melayang-layang di angkasa luar. Batuan-batuan ini banyak mengandung unsur besi dan nikel. Batuan-batuan ini masuk ke 133atmosfer bumi karena pengaruh gravitasi bumi. Gesekan dengan atmosfer bumi menghasilkan panas yang membakar habis batuan-batuan itu sebelum sempat mencapai permukaan bumi. Batuan-batuan atau benda langit yang bergesekan dengan atmosfer bumi dan habis terbakar sebelum sampai di permukaan bumi disebut meteor. Adapun batuan-batuan yang tidak habis terbakar dan sampai di permukaan bumi disebut meteorit. Ada sebuah meteorit yang jatuh di Arizona USA dengan ukuran yang sangat besar hingga membentuk sebuah kawah. Kawah tersebut dinamakan Kawah Barringer. Contoh meteorit dapat dilihat di Museum Geologi, Bandung. f. Bulan Bulan merupakan benda langit yang mengitari bumi. Karena bumi mengitari matahari, maka bulan juga mengitari matahari bersamaan dengan bumi. Selain itu, bulan juga berputar pada porosnya sendiri. Dengan demikian bulan mempunyai tiga gerakan sekaligus. Benda-benda langit yang berada di dalam tata surya tersusun secara rapi. Selama bergerak benda-benda itu tidak saling bertabrakan. Hal itu terjadi karena adanya gaya gravitasi pada masing-masing benda langit. Dengan demikian, dapat dikatakan bahwa yang menyebabkan gerakan benda-benda langit teratur adalah gaya gravitasi. Namun, penyebab sesungguhnya adalah Sang Pembuat gaya gravitasi yaitu Tuhan Yang Mahabesar.
Latihan
1. Jelaskan perbedaan antara bintang dan planet. 2. Apakah pengertian: a. komet,           d. meteor, b. asteroid,      e. meteorit, c. meteoroid,
B.   MATAHARI SEBAGAI BINTANG Orang-orang zaman dahulu untuk dapat mencari dan menentukan arah dengan melihat rasi bintang di langit. Tahukah kamu bintang apakah yang paling dekat dengan bumi? 1. Matahari Sebagai Salah Satu Bintang Benda langit di jagat raya ini jumlahnya banyak sekali. Ada yang dapat memancarkan cahaya sendiri ada juga yang tidak dapat memancarkan cahaya sendiri, tetapi hanya memantulkan cahaya dari benda lain. Bintang adalah benda langit yang memancarkan cahaya sendiri (sumber cahaya). Matahari dan bintang mempunyai persamaan, yaitu dapat memancarkan cahaya sendiri. Matahari merupakan sebuah bintang yang tampak sangat besar karena letaknya paling dekat dengan bumi. Matahari memancarkan energi yang sangat besar dalam bentuk gelombang elektromagnet. Gelombang elektromagnet tersebut  adalah gelombang cahaya tampak, sinar X, sinar gamma, sinar ultraviolet, sinar inframerah, dan gelombang mikro. 2.  Sumber Energi Matahari Sumber energi matahari berasal dari reaksi fusi yang terjadi di dalam inti matahari. Reaksi fusi ini merupakan penggabungan atom-atom hidrogen menjadi helium. Reaksi fusi tersebut akan menghasilkan energi yang sangat besar. Matahari tersusun dari berbagai macam gas antara lain hidrogen (76%), helium (22%), oksigen dan gas lain (2%). 3.  Lapisan-Lapisan Matahari Matahari adalah bola gas pijar yang sangat panas. Matahari terdiri atas empat lapisan, yaitu inti matahari, fotosfer, kromosfer, dan korona. a. Inti Matahari Bagian dalam dari matahari, yaitu inti matahari. Pada bagian ini terjadi reaksi fusi sebagai sumber energi matahari. Suhu pada inti matahari dapat mencapai 15000000 derajat celcius. Energi yang dihasilkan dari reaksi fusi akan dirambatkan sampai pada lapisan yang paling luar, yang kemudian akan terealisasi ke angkasa luar. b. Fotosfer Fotosfer adalah bagian permukaan matahari. Lapisan ini mengeluarkan cahaya sehingga mampu memberikan penerangan sehari-hari. Suhu pada lapisan ini mampu mencapai lebih kurang 16.000 derajat C dan mempunyai ketebalan sekitar 500 km. c. Kromosfer Kromosfer adalah lapisan di atas fotosfer dan bertindak sebagai atmosfer matahari. Kromosfer mempunyai ketebalan 16.000 km dan suhunya mencapai lebih kurang 9.800 derajat C. Kromosfer terlihat berbentuk gelang merah yang mengelilingi bulan pada waktu terjadi gerhana matahari total. d. Korona Korona adalah lapisan luar atmosfer matahari. Suhu korona mampu mencapai lebih kurang 1.000.000 derajat C. Warnanya keabu-abuan yang dihasilkan dari adanya ionisasi pada atom-atom akibat suhunya yang sangat tinggi. Korona tampak ketika terjadi gerhana matahari total, karena pada saat itu hampir seluruh cahaya matahari tertutup oleh bulan. Bentuk korona, seperti mahkota dengan warna keabu-abuan. 1344. Gangguan-Gangguan pada Matahari Gejala-gejala aktif pada matahari atau aktivitas matahari sering menimbulkan gangguan-gangguan pada matahari. Gangguan-gangguan tersebut, yaitu sebagai berikut. a. Gumpalan-Gumpalan pada Fotosfer (Granulasi) Gumpalan-gumpalan ini timbul karena rambatan gas panas dari inti matahari ke permukaan. Akibatnya, permukaan matahari tidak rata melainkan bergumpal-gumpal. b. Bintik Matahari (Sun Spot) Bintik matahari merupakan daerah tempat munculnya medan magnet yang sangat kuat. Bintik-bintik ini bentuknya lubang-lubang di permukaan matahari di mana gas panas menyembur dari dalam inti matahari, sehingga dapat mengganggu telekomunikasi gelombang radio di permukaan bumi. c. Lidah Api Matahari Lidah api matahari merupakan hamburan gas dari tepi kromosfer matahari. Lidah api dapat mencapai ketinggian 10.000 km. Lidah api sering disebut  prominensa atau  protuberan. Lidah api terdiri atas massa proton 135dan elektron atom hidrogen yang bergerak dengan kecepatan tinggi. Massa partikel ini dapat mencapai permukaan bumi. Sebelum masuk ke bumi, pancaran partikel ini tertahan oleh medan magnet bumi (sabuk Van Allen), sehingga kecepatan partikel ini menurun dan bergerak menuju kutub, kemudian lama-kelamaan partikel berpijar yang disebut aurora. Hamburan partikel ini mengganggu sistem komunikasi gelombang radio. Aurora di belahan bumi selatan disebut Aurora Australis, sedangkan di belahan bumi utara disebut Aurora Borealis. d. Letupan (Flare) Flare adalah letupan-letupan gas di atas permukaan matahari. Flare dapat menyebabkan gangguan sistem komunikasi radio, karena letusan gas tersebut terdiri atas partikel-partikel gas bermuatan listrik.
 

Nafisah Pilaras Template by Ipietoon Blogger Template | Gadget Review